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Abstract Thermoelastic interactions in an infinite homoge-
neous elastic medium with a spherical or cylindrical cavity
are studied. The cavity surface is subjected to a ramp-type
heating of its internal boundary which is assumed to be trac-
tion free. A general finite element model is proposed to
analyze transient phenomena in thermoelastic solids. Lord–
Shulman and Green–Lindsay for the generalized thermoe-
lasticity model are selected for that purpose since it al-
lows for “second sound” effects and reduces to the classical
model by appropriate choice of the parameters. The problem
has been solved numerically using a finite element method
(FEM). Numerical results for the temperature distribution,
displacement, radial stress and hoop stress are represented
graphically. A comparison is made with the results predicted
by the three theories.

List of symbols

Lame’s constants λ, µ

Density of the medium ρ

Specific heat at constant strain Cv

Coefficient of linear thermal expansion αt

Time t
Temperature T
Reference temperature To

Thermal conductivity K
Heat source Q
Relaxation times t1, t2, t3
Time of rise of temperature to
Kronecker symbol δij

Domain Γ
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The weighting functions δu , δT
Components of stress tensor τij

Components of displacement vector u i

Body force vector Fi

1 Introduction

The generalized theory of thermoelasticity has drawn
widespread attention because it removes the physically
unacceptable situation of the classical theory of thermoe-
lasticity, that is, that the thermal disturbance propagates
with infinite velocity. It is receiving serious attention of dif-
ferent researchers. Because of the advancement of pulsed
lasers, fast burst nuclear reactors and particle accelera-
tors, etc. which can supply heat pulses with a very fast
time-rise. Lord and Shulman [1] introduced the theory of
generalized thermoelasticity with one relaxation time for
the special case of an isotropic body. The temperature-rate
dependent theory of thermoelasticty developed by Green
and Lindsay [2], which is also known as thermoelastic-
ity theory with two relaxation times. Lord–Shulman and
Green–Lindsay are two important models of generalized
theory of thermoelasticity. According to these generalized
theories, heat propagation can be visualized as a wave phe-
nomenon rather than a diffusion one; in the literature, it is
usually referred to as the second sound effect. Potential ap-
plications for these new theories have been reported in the
survey article by Ignaczak [3] and references therein. Bahar
and Hetnarski [4, 5] developed a method for solving coupled
thermoelastic problems by using the state-space approach in
which the problem is rewritten in terms of the state-space
variables, namely the temperature, the displacement, and
their gradients. During the last three decades a number of in-
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vestigations [6–9] have been carried out using the aforesaid
theories of generalized thermoelasticity. Chandrasekhara-
iah [10] studied one-dimensional waves in a homogeneous
isotropic half-space due to sudden inputs of temperature
and stress/strain on the boundary by employing the Laplace
transform method in the context of thermoelasticity without
energy dissipation. In a paper by Abd-alla and Abbas [11],
a problem of generalized magnetothermoelasticity for an in-
finitely long, perfectly conducting cylinder has been studied.
Note that in most of the earlier studies, mechanical or ther-
mal loading on the bounding surface was considered to be
in the form of a shock. However, the sudden jump of the
load is merely an idealized situation because it is impossible
to realize a pulse described mathematically by a step func-
tion; even a very rapid rise time (of the order 10−9 s) may
be slow in terms of the continuum. This is particularly true
in the case of second sound effects when the thermal relax-
ation times for typical metals are less than 10−9 s. It is thus
felt that a finite rise time of external load (mechanical or
thermal) applied on the surface should be considered while
studying a practical problem of this nature. Considering this
aspect of rise time, Misra et al. [12–14] and Youssef [15]
solved some problems involving a ramp-type heating at the
bounding surface. Chandrasekharaiah and Keshavan [16]
and Choudhury [17] studied axisymmetric thermoelastic in-
teractions in an unbounded body with cylindrical cavity.

The exact solution of the generalized thermoelastic-
ity theory governing equations for a coupled and non-
linear/linear exists only for very special and simple initial-
and boundary problem. In view of calculating general prob-
lems, a numerical solution technique is to be used. For this
reason the finite element method is chosen. The method
of weighted residuals offers us the formulation of the fi-
nite element equations and we obtain a best approximated
solutions to linear and nonlinear ordinary and partial dif-
ferential equations. Applying this method basically involves
three steps. The first step is to assume the general behav-
ior of the unknown field variables in such a way as satisfy
the given differential equations. Substitution of these ap-
proximating functions into the differential equations and
boundary conditions result in some errors, called the re-
sidual. This residual has to vanish in an average sense over
the solution domain. The second step is the time integra-
tion. The time derivatives of the unknown variables have to
be determined by former results. The third step is to solve
the equations resulting from the first and the second step
by the solving algorithm of the finite element program (see
Zienkiewicz [18]).

The object of the present paper is to study the numeri-
cal solution of thermoelastic problem in an unbounded body
with a spherical or cylindrical cavity subjected to a ramp-
type heating applied to the boundary of the cavity. The
problem has been solved numerically using a finite elem-

ent method (FEM). Numerical results for the temperature
distribution, displacement, radial stress and hoop stress are
represented graphically. A comparison is made with the re-
sults predicted by the three theories.

2 Formulation of the problem

We consider an unbounded homogeneous and isotropic elas-
tic medium which possesses a spherical or cylindrical cavity
of radius r1. In the context of generalized thermoelasticity
theories, the system of equations that include the displace-
ment, the stress, the strain and the temperature for a linear,
homogenous and isotropic thermoelastic continuum take the
following form [14]

(λ+µ)u j, ij +µu i, jj + Fi −γ

(
T, i + t1

•
T, i

)
= ••

ρu i , (1)

the energy equation has the form

KT, ii = ρCv

( •
T + t2

••
T

)
+

(
1 + t3

∂

∂t

) (
γTo

•
u i, i −ρQ

)
,

(2)

the constitutive equations are given by

τij = λu i, iδij +µ
(
u i, j + u j, i

)
−γ

(
T + t1

•
T

)
δij . (3)

The above equations reduce to equations of classical dynam-
ical coupled theory (CD), Lord and Shulman’s theory (LS)
and Green and Lindsay’s theory (GL) as:

i. Classical dynamical coupled theory (CD, 1956)

t1 = 0, t2 = 0, t3 = 0 .

ii. Lord and Shulman’s theory (LS, 1967)

t1 = 0, t2 = t3 > 0 .

iii.Green and Lindsay’s theory (GL, 1972)

t1 > 0, t2 > 0, t3 = 0 .

Case 1:

Let us consider a perfectly conducting elastic unbounded
body with cylindrical cavity occupying the region r1 ≤
r < ∞ of an isotropic homogeneous medium whose state
can be expressed in terms of the space variable rand the
time variable t. We use a cylindrical system of coordi-
nates (r, θ, z),for axially symmetric problem, we have u r =
u r(r, z, t), u θ = 0, u z = u z(r, z, t). Furthermore, if only
axisymmetric plane strain problem is considered, we have
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u r = u r(r, t) and u θ = u z = 0. Therefore, the radial strain
err and the hoop strain eθθ are given by:

err = ∂u
∂r

, eθθ = u
r
, (4)

where u is a radial displacement. The stress-displacement
relations are:

τrr = (λ+2µ) ∂u
∂r +λ u

r −γ

(
T + t1 ∂T

∂t

)
,

τθθ = λ∂u
∂r + (λ+2µ) u

r −γ

(
T + t1 ∂T

∂t

)
.

(5)

It is assumed that there are no body forces and heat sources
in the medium and that the plane, the equation of motion and
energy equation have the form:

(λ+2µ)

[
∂2u
∂r2

+ 1
r

∂u
∂r

− u
r2

]
−γ

∂

∂r

(
T + t1

∂T
∂t

)
= ρ

∂2u
∂t2

,

(6)

∂2T
∂r2

+ 1
r

∂T
∂r

= ρCv

K

(
∂

∂t
+ t2

∂2

∂t2

)
T

+ To γ

K

(
∂

∂t
+ t3

∂2

∂t2

) (
∂u
∂r

+ u
r

)
. (7)

Case 2:

In this case, we assume that the center of the cavity is at
the origin of the spherical polar coordinates. The resulting
thermoelastic interactions are spherically symmetric and the
only non-zero displacement is u = u (r, t). Then the non-
zero stress components are

τrr = (λ+2µ) ∂u
∂r +λ 2u

r −γ

(
T + t1 ∂T

∂t

)
,

τθθ = λ∂u
∂r + (λ+µ) 2u

r −γ

(
T + t1 ∂T

∂t

)
.

(8)

The equation of motion in the absence of body forces is
given by

(λ+2µ)

[
∂2u
∂r2

+ 2
r

∂u
∂r

− 2u
r2

]
−γ

∂

∂r

(
T + t1

∂T
∂t

)
= ρ

∂2u
∂t2

.

(9)

The energy equation without heat sources has the form

∂2T
∂r2

+ 2
r

∂T
∂r

= ρCv

K

(
∂

∂t
+ t2

∂2

∂t2

)
T

+ To γ

K

(
∂

∂t
+ t3

∂2

∂t2

) (
∂u
∂r

+ 2u
r

)
. (10)

The Eqs. 5–10 reduce to the equations

τrr = (λ+2µ) ∂u
∂r +nλ u

r −γ

(
T + t1 ∂T

∂t

)
,

τθθ = λ∂u
∂r + (nλ+2µ) u

r −γ

(
T + t1 ∂T

∂t

)
,

(11)

(λ+2µ)

[
∂2u
∂r2

+n
(

1
r

∂u
∂r

− u
r2

)]
−γ

∂

∂r

(
T + t1

∂T
∂t

)

= ρ
∂2u
∂t2

, (12)

∂2T
∂r2

+ n
r

∂T
∂r

= ρCv

K

(
∂

∂t
+ t2

∂2

∂t2

)
T

+ To γ

K

(
∂

∂t
+ t3

∂2

∂t2

) (
∂u
∂r

+ nu
r

)
. (13)

With n = 1 give the first case and n = 2 for the second case.
Then according to our assumption the initial and boundary
conditions are

u (r, 0) = ∂u (r, 0)

∂t
= 0 , T(r, 0) = ∂T(r, 0)

∂t
= 0 , (14)

τrr(r1, t) = 0 , T(r1, t) =

⎧
⎨

⎩

0 t ≤ 0
T1

t
to

0 < t ≤ to
T1 t > to

(15)

T1 being a constant. It is convenient to change the preced-
ing equations into the dimensionless forms. To do this, the
dimensionless parameters are introduced as

(r◦, r◦
1 , u ◦) = c

χ
(r, r1, u ) , (T ◦, T ◦

1 ) = 1
To

(T, T1), (16)

(t◦, t◦o , t◦1 , t◦2 , t◦3) = c2

χ
(t, to , t1, t2, t3),

(
τ◦

rr , τ◦
θθ

)

= 1
µ

(τrr , τθθ) , (17)

with c2 = λ+2µ
ρ

and χ = K
ρCv

. Substituting into Eqs. 11–15,
one may obtain (after dropping the superscript◦ for conve-
nience)
[
τrr

τθθ

]
=

[
β2

β2 −2

]
∂u
∂r

+
[

n
(
β2 −2

)

n
(
β2 −n +1

)
]

× u
r

−β2ξ

(
T + t1

∂T
∂t

) [
1
1

]
, (18)

∂2u
∂r2

+n
(

1
r

∂u
∂r

− u
r2

)
− ξ

∂

∂r

(
T + t1

∂T
∂t

)
= ∂2u

∂t2
, (19)
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